Comparison of Otolith Readability and Reproducibility of Counts of Translucent Zones Using Different Otolith Preparation Methods for Four Endemic Labeobarbus Species in Lake Tana, Ethiopia

Author:

Gebremedhin ,Bekaert ,Getahun ,Bruneel ,Anteneh ,Goethals ,Torreele

Abstract

The analysis of fish age data is vital for the successful conservation of fish. Attempts to develop optimal management strategies for effective conservation of the endemic Labeobarbus species are strongly affected by the lack of accurate age estimates. Although methodological studies are key to acquiring a good insight into the age of fishes, up to now, there have not been any studies comparing different methods for these species. Thus, this study aimed at determining the best method for the endemic Labeobarbus species. Samples were collected from May 2016 to April 2017. Asteriscus otoliths from 150 specimens each of L. intermedius, L. tsanensis, L. platydorsus, and L. megastoma were examined. Six methods were evaluated; however, only three methods resulted in readable images. The procedure in which whole otoliths were first submerged in water, and subsequently placed in glycerol to take the image (MO1), was generally best. Except for L. megastoma, this method produced the clearest image as both the coefficient of variation and average percentage error between readers were lowest. Furthermore, except for L. megastoma, MO1 had high otolith readability and no systematic bias. Therefore, we suggest that MO1 should be used as the standard otolith preparation technique for the first three species, while for L. megastoma, other preparation techniques should be evaluated. This study provides a reference for researchers from Africa, particularly Ethiopia, to develop a suitable otolith preparation method for the different tropical fish species.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3