Abstract
In smart interactive environments, such as digital museums or digital exhibition halls, it is important to accurately understand the user’s intent to ensure successful and natural interaction with the exhibition. In the context of predicting user intent, gaze estimation technology has been considered one of the most effective indicators among recently developed interaction techniques (e.g., face orientation estimation, body tracking, and gesture recognition). Previous gaze estimation techniques, however, are known to be effective only in a controlled lab environment under normal lighting conditions. In this study, we propose a novel deep learning-based approach to achieve a successful gaze estimation under various low-light conditions, which is anticipated to be more practical for smart interaction scenarios. The proposed approach utilizes a generative adversarial network (GAN) to enhance users’ eye images captured under low-light conditions, thereby restoring missing information for gaze estimation. Afterward, the GAN-recovered images are fed into the convolutional neural network architecture as input data to estimate the direction of the user gaze. Our experimental results on the modified MPIIGaze dataset demonstrate that the proposed approach achieves an average performance improvement of 4.53%–8.9% under low and dark light conditions, which is a promising step toward further research.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献