Angle-Resolved Hollow-Core Fiber-Based Curvature Sensing Approach

Author:

Guimarães William M.,Cordeiro Cristiano M. B.ORCID,Franco Marcos A. R.,Osório Jonas H.ORCID

Abstract

We propose and theoretically study a new hollow-core fiber-based curvature sensing approach with the capability of detecting both curvature radius and angle. The new sensing method relies on a tubular-lattice fiber that encompasses, in its microstructure, tubes with three different thicknesses. By adequately choosing the placement of the tubes within the fiber cross-section, and by exploring the spectral shifts of the fiber transmitted spectrum due to the curvature-induced mode field distributions’ displacements, we demonstrate a multi-axis curvature sensing method. In the proposed platform, curvature radii and angles are retrieved via a suitable calibration routine, which is based on conveniently adjusting empirical functions to the fiber response. Evaluation of the sensing method performance for selected cases allowed the curvature radii and angles to be determined with percentual errors of less than 7%. The approach proposed herein provides a promising path for the accomplishment of new curvature sensors able to resolve both the curvature radius and angle.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Temperature Sensing Using a Hollow-Core Fiber With Thick Cladding Tubes;IEEE Sensors Journal;2024-08-15

2. Standard single-mode fiber and hollow-core fiber sensitivity to acoustic vibrations in audible spectrum;Optical Sensing and Detection VIII;2024-06-20

3. Hollow-Core Fiber-Based Sensors: Recent Advancements in Brazil;2024 Latin American Workshop on Optical Fiber Sensors (LAWOFS);2024-05-20

4. Self‐Calibrated Flexible Holographic Curvature Sensor;Advanced Materials Technologies;2024-02-15

5. Curvature Sensing with a Hybrid-Lattice Hollow-Core Photonic Crystal Fiber;2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC);2023-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3