Study on the Mechanism of Carbon Dioxide Miscible Fracturing Fluid Huff and Puff in Enhanced Oil Recovery

Author:

Xu Shijing12ORCID,Wang Changquan13ORCID,Gao Bin4,Wang Tiezheng5

Affiliation:

1. Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, Yangtze University, Wuhan 430100, China

2. Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery, Xi’an 710000, China

3. State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou 730000, China

4. The Second Oil Production Plant, Xinjiang Oilfield Company, Karamey 834008, China

5. North China Branch of CNOOC Gas & Power Group Co., Ltd., Beijing 100028, China

Abstract

Carbon dioxide (CO2) miscible fracturing huff-and-puff technology now plays a pivotal role in enhancing crude oil recovery rates, particularly in reservoirs with challenging physical properties, strong water sensitivity, high injection pressure, and complex water-injection dynamics. In this study, the oil-increasing mechanism and huff-and-puff effect of CO2 miscible fracturing fluid are investigated through a comprehensive experimental approach. Specifically, experiments on PVT gas injection expansion, minimum miscible pressure, and CO2 miscible fracturing fluid huff and puff are conducted on the G fault block reservoir of the J Oilfield. The experimental findings demonstrate that injecting CO2 into reservoirs leads to an expansion in oil volume, a reduction in viscosity, and an increase in saturation pressure. Crude oil extraction is further enhanced by the addition of solubilizers and viscosity reducers. The use of solubilizers not only increases oil recovery rates but also reduces the minimum miscible pressure required for effective CO2 dispersion. We also found that shut-in times, permeability, and the huff-and-puff method used all have considerable impacts on huff-and-puff recovery rates. This study offers valuable technical insights, supporting the application of CO2 miscible fracturing huff-and-puff technology to enhance oil recovery rates in low-permeability reservoirs.

Funder

Natural Science Foundation of China

Open Foundation of Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3