Comparative Study of the Stilbenes and Other Phenolic Compounds in Cabernet Sauvignon Wines Obtained from Two Different Vinifications: Traditional and Co-Inoculation

Author:

Petrović Aleksandar1ORCID,Živković Nikolina1ORCID,Torović Ljilja2ORCID,Bukarica Ana3,Nikolić Vladan4,Cvejić Jelena2ORCID,Gojković-Bukarica Ljiljana3ORCID

Affiliation:

1. Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia

2. Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia

3. Department of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Belgrade, Doktora Subotića 8, 11000 Belgrade, Serbia

4. Aleksandrović Winery D.O.O., Vinča—Oplenac, 34310 Topola, Serbia

Abstract

From grape cultivation to ripening and harvest timing to processing, each step of the winemaking process can be a critical point when it comes to wine quality and phenolic composition. In this study, the influence of winemaking technology on resveratrol and quercetin content, as well as other polyphenolic compounds, was investigated. Resveratrol is a non-flavonoid polyphenolic stilbene synthesized by grape skin when damaged by infectious diseases or ionizing radiation. Quercetin is a phenol found in grape skins and stems and is produced to protect grapes from UV light damage. Trans-resveratrol and quercetin are known to act as antioxidants, reduce the risk of atherosclerosis and type 2 diabetes, inhibit the growth of cancer cells, and prevent the release of allergic and inflammatory molecules. However, the question was whether red wine could be enriched with these phenols using a co-inoculation winemaking technology. The main new idea was to completely replace the cold maceration process with maceration with the addition of wild yeast (Torulaspora delbrueckii, Td). Maceration with the addition of wild yeast (Td) offers the following advantages over traditional cold maceration: (1) higher concentrations of trans-resveratrol (>35–40%) and quercetin (>35–40%) in the final wine, (2) the new wine has a higher potential for human health, (3) the wine has better aroma and stability due to the higher mannoprotein content, and (4) better energy efficiency in the production process. The study of stability during storage and aging also included derivatives of benzoic acid and hydroxycinnamic acid, piceid, catechin, naringenin, rutin, kaempherol, hesperetin, and anthocyanins. This study found that younger wines had higher phenolic content, while storage of the wine resulted in a decrease in total phenolic content, especially monomeric stilbenes and quercetin. This study represents a small part of the investigation of the influence of non-Saccharomyces yeasts on the phenolic profile of wine, which still requires extensive research with practical application. In addition, non-Saccharomyces yeasts such as Kluyveromyces thermotolerans, Candida stellata, and Metschnikowia pulcherrima could also be used in future studies.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

The Innovation Fund Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3