The Storage Process of Electric Energy Produced from Renewable Sources from Hydrogen to Domestic Hot Water Heating

Author:

Stoica Dorel1ORCID,Mihăescu Lucian2,Lăzăroiu Gheorghe3ORCID,Lăzăroiu George Cristian4ORCID

Affiliation:

1. Department of Mechanics “Radu P. Voinea”, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

2. Department of Technical Thermodynamics, Engines, Thermal and Refrigeration Equipment, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

3. Department of Energy Generation and Use, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

4. Electrical Systems Department, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

Abstract

The expansion of renewable electricity storage technologies, including green hydrogen storage, is spurred by the need to address the high costs associated with hydrogen storage and the imperative to increase storage capacity. The initial section of the paper examines the intricacies of storing electricity generated from renewable sources, particularly during peak periods, through green hydrogen. Two primary challenges arise: firstly, the complexity inherent in the storage technology and its adaptation for electricity reproduction; and secondly, the cost implications throughout the technological chain, resulting in a significant increase in the price of the reproduced energy. Electric energy storage emerges as a pivotal solution to accommodate the growing proportion of renewable energy within contemporary energy systems, which were previously characterized by high stability. During the transition to renewable-based energy systems, optimizing energy storage technology to manage power fluctuations is crucial, considering both initial capital investment and ongoing operational expenses. The economic analysis primarily focuses on scenarios where electricity generated from renewable sources is integrated into existing power grids. The subsequent part of this paper explores the possibility of localizing excess electricity storage within a specific system, illustrated by domestic hot water.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3