Fungal Strain as Biological Tool to Remove Genotoxicity Effect of Phenolic Compounds from Olive Mill Wastewater

Author:

Boutafda Aziz12,Hafidi Mohamed13ORCID,Ouhdouch Yedir13,Pinelli Eric4ORCID,Jemo Martin3,El Fels Loubna1

Affiliation:

1. Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Marrakesh 40000, Morocco

2. African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco

3. Agrobiosciences (AgBs) Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco

4. Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INP-ENSAT, UPS, Avenue de l’Agrobiopôle, F-31326 Castanet-Tolosan, France

Abstract

This study aims to select fungi isolates to reduce olive mill wastewater (OMWW) chemical oxygen demand (COD) and phenolic compounds (PC), as well as their genotoxicity effect. Treatment with mold, isolated by an innovative technique using phenolic compound-selective media, showed a reduction rate of about 4% for COD and 2% for PC during one month of incubation without optimization of the treatment conditions. Whereas this percentage reached 98% and 96% for COD and PC, respectively, after only 12 days of treatment, when the C:N ratio was adjusted to 30 by adding urea as a nitrogen source at 150 rpm agitation speed. Genetic sequence homology of the most efficient mold isolate showed 100% similarity to Penicillium chrysogenum. High-performance liquid chromatography analysis of phenolic extracts of untreated OMWW showed the presence of five compounds—hydroxytyrosol at 1.22 g.L−1, tyrosol at 0.05 g.L−1, caffeic acid at 0.16 g.L−1, p-coumaric acid at 0.05 g.L−1 and oleuropein at 0.04 g.L−1—that were eliminated during the degradation process at 88.82%. Genotoxicity, assessed by the Vicia-faba root cell, showed a significant decrease in micronucleus frequency of about 96% after fungal treatment. These results confirm the positive role of fungal treatment of OMWW to eliminate genotoxicity and their ability to improve the agronomic potential.

Funder

OCP Innovation

Moroccan Ministry of the Environment

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3