Saturated Ground Vibration Analysis Based on a Three-Dimensional Coupled Train-Track-Soil Interaction Model

Author:

Li ,Su ,Kaewunruen

Abstract

A novel three-dimensional (3D) coupled train-track-soil interaction model is developed based on the multi-body simulation (MBS) principle and finite element modeling (FEM) theory using LS-DYNA. The novel model is capable of determining the highspeed effects of trains on track and foundation. The soils in this model are treated as saturated media. The wheel-rail dynamic interactions under the track irregularity are developed based on the Hertz contact theory. This model was validated by comparing its numerical results with experimental results obtained from field measurements and a good agreement was established. The one-layered saturated soil model is firstly developed to investigate the vibration responses of pore water pressures, effective and total stresses, and displacements of soils under different train speeds and soil moduli. The multi-layered soils with and without piles are then developed to highlight the influences of multi-layered soils and piles on the ground vibration responses. The effects of water on the train-track dynamic interactions are also presented. The original insight from this study provides a new and better understanding into saturated ground vibration responses in high-speed railway systems using slab tracks in practice. This insight will help track engineers to inspect, maintain, and improve soil conditions effectively, resulting in a seamless railway operation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3