Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years

Author:

Peng Xuefeng1,Feng Yu2,Zang Han3,Zhao Dan4,Zhang Shiqi5,Cai Ziang1,Wang Juan16,Peng Peihao16

Affiliation:

1. College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China

2. School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu 611730, China

3. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China

4. School of Tourism and Culture Industry, Sichuan Tourism University, Chengdu 610100, China

5. School of Emergency Management, Xihua University, Chengdu 610039, China

6. Institute of Ecological Resources and Landscape Architecture, Chengdu University of Technology, Chengdu 610059, China

Abstract

The alpine timberline is a component of terrestrial ecosystems and is highly susceptible to climate change. Since 2000, the Tibetan Plateau’s high-altitude zone has been experiencing a persistent warming, clarifying that the response of the alpine timberline to climate warming is important for mitigating the negative impacts of global warming. However, it is difficult for traditional field surveys to clarify changes in the alpine timberline over a wide range of historical periods. Therefore, alpine timberline sites were extracted from 2000–2021, based on remote sensing data sources (LANDSAT, MODIS), to quantify the timberline vegetation growth in the Gexigou National Nature Reserve and to explore the impacts of climate change on timberline vegetation growth. The results show that the mean temperature increased significantly from 2000 to 2021 (R2 = 0.35, p = 0.0036) at a rate of +0.03 °C/year. The alpine timberline continued to shift upwards, but at a slower rate, by +22.87 m, +23.23 m, and +2.73 m in 2000–2007, 2007–2014, and 2014–2021, respectively. The sample plots of the timberline showing an upward shift experienced a decreasing trend. The timberline NDVI increased significantly from 2000 to 2021 (R2 = 0.2678, p = 0.0136) with an improvement in its vegetation. The timberline NDVI is positively correlated with the annual mean temperature (p < 0.05), February mean temperature (p < 0.05), June minimum temperature (p < 0.05), February maximum temperature (p < 0.01), June maximum temperature (p < 0.01), and June mean temperature (p < 0.01). It was also found to be negatively correlated with annual precipitation (p < 0.01). The study showcases the practicality of using remote sensing techniques to investigate the alpine timberline shifts and timberline vegetation. The findings are valuable in developing approaches to the sustainable management of timberline ecosystems.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Sichuan Province Natural Science Foundation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3