Assessment of the Emission Characteristics of Major States in the United States using Satellite Observations of CO2, CO, and NO2

Author:

Xu Anqi1,Xiang Chengzhi1

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

By using space-based measurements of the column-averaged dry air mole fraction of carbon dioxide (XCO2) from the Orbiting Carbon Observatory-2 (OCO-2) and CO and NO2 from the Tropospheric Monitoring Instrument (TROPOMI), this study investigates the seasonal variation in the characteristics of CO2, CO, and NO2 across major states in the United States. Beyond correlating these trends with natural factors, significant emphasis is placed on human activities, including heating demands, energy usage, and the impacts of the COVID-19 pandemic. Concentration enhancements in observations influenced by anthropogenic emissions from urban regions relative to background values are calculated to estimate gas emissions. Our investigation reveals a strong correlation between NO2 and CO2 emissions, as evidenced by a correlation coefficient (r) of 0.75. Furthermore, we observe a correlation of 0.48 between CO2 and CO emissions and a weaker correlation of 0.37 between CO and NO2 emissions. Notably, we identify the NO2 concentration as a reliable indicator of CO2 emission levels, in which a 1% increase in NO2 concentration corresponds to a 0.8194% (±0.0942%) rise in annual mean CO2 emissions. Enhancement ratios among NO2, CO, and XCO2 are also calculated, uncovering that high ΔNO2: ΔXCO2 ratios often signify outdated industrial structures and production technologies, while low ΔCO: ΔXCO2 ratios are linked to states that utilize clean energy sources. This approach offers a deeper understanding of the effect of human activities on atmospheric gas concentrations, paving the way for more effective environmental monitoring and policy-making.

Funder

Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Talent Launch Fund of Nanjing University of Information Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference47 articles.

1. United Nations Environment Programme (2023, October 20). 2021 Annual Report. Available online: https://www.unep.org/resources/annual-report-2021.

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Robust algorithm for precise XCO2 retrieval using single observation of IPDA LIDAR;Zhang;Opt. Express,2023

4. Improving quantification of methane point source emissions from imaging spectroscopy;Pei;Remote Sens. Environ.,2023

5. Active–passive collaborative approach for XCO2 retrieval using spaceborne sensors;Cai;Opt. Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3