Iron Oxide and Hydroxide Speciation in Emissions of Brake Wear Particles from Different Friction Materials Using an X-ray Absorption Fine Structure

Author:

Hagino Hiroyuki1ORCID,Iwata Ayumi23ORCID,Okuda Tomoaki2ORCID

Affiliation:

1. Japan Automobile Research Institute (JARI), 2530 Karima, Tsukuba 305-0822, Ibaraki, Japan

2. Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama 223-8522, Kanagawa, Japan

3. Meteorological Research Institute Japan Meteorological Agency, 1-1 Nagamine, Tsukuba 305-0052, Ibaraki, Japan

Abstract

Iron (Fe), the main component of non-exhaust particulates, is known to have variable health effects that depend on the chemical species of iron. This study characterized the possible contribution of iron oxides and hydroxides to airborne brake wear particles under realistic vehicle driving and braking conditions with different brake pad friction materials. We found significant differences in wear factors and PM10 and PM2.5 emissions between non-asbestos organic (NAO) and European performance (ECE) brake pads. Iron was the dominant contributor to PM10 and PM2.5 brake wear particles for both NAO and ECE. The iron concentration ratio in the particle mass (PM) was comparable to the disc-to-pads ratio measured by wear mass. The fact that magnetite, which is of interest with respect to health effects, was less abundant in NAO than in ECE suggested that tribo-oxidations occurred in NAO. Metallic iron is generated not only from abrasive wear but also from tribo-chemical reduction with magnetite as the starting material. We found that there were differences in PM emissions between brake friction materials, and that the phase transformations of iron differed between friction materials. These differences were apparent in the distribution of iron oxides and hydroxides. Heat, tribo-oxidation, and tribo-reduction are intricately involved in these reactions.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

JST CREST

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3