Impacts of Climate Change on Runoff in the Heihe River Basin, China

Author:

Liu Qin12,Cheng Peng2,Lyu Meixia2,Yan Xinyang2,Xiao Qingping3,Li Xiaoqin2,Wang Lei4,Bao Lili2

Affiliation:

1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. Meteorological Service Center of Gansu Province, Lanzhou 730020, China

3. Gongnongqu Electric Pumping Station, Lanzhou 730020, China

4. CMA Earth System Modeling and Prediction Centre, Beijing 100081, China

Abstract

Located in the central part of the arid regions of Northwest China, the Heihe River Basin (HRB) plays an important role in wind prevention, sand fixation, and soil and water conservation as the second largest inland river basin. In the context of the warming and wetting climate observed in Northwest China, the situation of the ecological environment in the HRB is of significant concern. Using the data from meteorological observation stations, grid fusion and hydrological monitoring, this study analyzes the multi-scale climate changes in the HRB and their impacts on runoff. In addition, predictive models for runoff in the upper and middle reaches were developed using machine learning methods. The results indicate that the climate in the HRB has experienced an overall warming and wetting trend over the past 60 years. At the same time, there are clear regional variabilities in the climate changes. Precipitation shows decreasing trends in the northwestern part of the HRB, while it shows increases at rates higher than the regional average in the southeastern part. Moreover, the temperature increases are generally smaller in the upper reaches than those in the middle and lower reaches. Over the past 60 years, there has been a remarkable increase in runoff at the Yingluo Gorge (YL) hydrological station, which exhibits a distinct “single-peak” pattern in the variation of monthly runoff. The annual runoff volume at the YL (ZY) hydrological station is significantly correlated with the precipitation in the upper (middle) reaches, indicating the precipitation is the primary influencing factor determining the annual runoff. Temperature has a significant impact only on the runoff in the upper reaches, while its impact is not significant in the middle reaches. The models trained by the support vector machines and random forest models perform best in predicting the annual runoff and monthly runoff, respectively. This study can provide a scientific basis for environmental protection and sustainable development in the HRB.

Funder

Key Research and Development Program of Gansu Province

Association of Science and Technology Innovation Drive Promotion Project of Gansu Province

National Natural Science Foundation of China

The Youth Science and Technology Fund project of Gansu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3