Is the Invasive Plant Amaranthus spinosus L. More Competitive than the Native Plant A. tricolor L. When Exposed to Acid Deposition with Different Sulfur–Nitrogen Ratios?

Author:

Li Yue1,Li Chuang1,Zhong Shanshan1,Xu Zhelun1,Liu Jun2,Xu Zhongyi1,Zhu Mawei1,Wang Congyan134ORCID,Du Daolin5

Affiliation:

1. Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. Zhenjiang Environmental Monitoring Center of Jiangsu Province, Zhenjiang 212009, China

3. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China

4. Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China

5. Jingjiang College, Jiangsu University, Zhenjiang 212013, China

Abstract

The functional differences between invasive plants and coexisting native plants can affect the invasion process of the former because invasive plants and coexisting native plants are exposed to similar or even identical environmental pressures. Acid deposition is an important component of atmospheric pollution, and acid deposition with different sulfur–nitrogen ratios may affect the invasion process of invasive plants by shifting the functional differences and differences in the growth performance between the invasive and coexisting native plants. It is crucial to analyze the functional indices and growth performance of these plants when exposed to acid deposition with different chemical compositions to assess the ecological impacts of atmospheric pollution on the growth performance of invasive plants. This study aimed to evaluate the functional differences and growth performance between the invasive plant Amaranthus spinosus L. and the native plant A. tricolor L. in mono- and mixed culture when exposed to an acid deposition with different sulfur–nitrogen ratios, including sulfur-rich acid deposition (sulfur–nitrogen ratio = 5:1), nitrogen-rich acid deposition (sulfur–nitrogen ratio = 1:5), and mixed acid deposition (sulfur–nitrogen ratio = 1:1). The acidity of the three types of simulated acid deposition was set at pH = 5.6 and pH = 4.5, respectively, with distilled water as a control (pH = 7.0). The competition experiment between A. spinosus and A. tricolor was conducted in the greenhouse. Amaranthus spinosus exhibited a strong growth performance over A. tricolor in the mixed culture, mainly via the increased leaf photosynthetic capacity. The competitiveness for light acquisition, leaf photosynthetic capacity, and enzymatic defense capacity under stress of A. spinosus may be vital to its growth performance. The lower pH acid deposition had imposed a greater reduction in the growth performance of both Amaranthus species than the higher pH acid deposition. Sulfur-rich acid deposition was more toxic to the growth performance of both Amaranthus species than nitrogen-rich acid deposition. Amaranthus spinosus was more competitive than A. tricolor, especially when exposed to acid deposition, compared with just distilled water. Thus, acid deposition, regardless of the sulfur–nitrogen ratio, may facilitate the invasion process of A. spinosus via the stronger growth performance.

Funder

Open Science Research Fund of Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, China

Special Research Project of School of Emergency Management, Jiangsu University

National Natural Science Foundation of China

Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province

Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3