Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment

Author:

Peng Qiang12,E Chongyi123,Li Xiangzhong34,Sun Yongjuan123,Zhang Jing123,Zhang Shuaiqi12,Shi Yunkun12ORCID,Ji Xianba12,Zhang Zhaokang12

Affiliation:

1. Qinghai Provincial Key Laboratory of Physical Geography and Environmental Process, College of Geographical Sciences, Qinghai Normal University, Xining 810008, China

2. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China

3. Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810008, China

4. Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China

Abstract

The stable carbon isotope composition of total organic matter (δ13Corg) has been utilized in aeolian sediments, serving as an indicator for reconstructing terrestrial paleoenvironments. The Qinghai Lake (QHL) Basin is a climate-sensitive region of significant importance in paleoclimatic reconstruction. However, the reconstructed climatic variations based on δ13Corg in aeolian sediments in the QHL Basin in the northeastern Qinghai-Tibet Plateau (QTP) are lacking, and their paleoclimatic significance remains poorly understood. By conducting δ13Corg measurements on the Niaodao (ND) aeolian profile near QHL, we reconstructed the paleoclimate changes of 11 ka–present. The variation range of the δ13Corg values in the ND profile indicated the terrestrial ecosystems were not the sole contributor to lacustrine organic matter. The δ13Corg values are an indicator of historical temperature changes in the study area, exhibiting similar trends with the reconstruction of Chinese summer temperatures, East Asian air temperature, global temperature, and Northern Hemisphere summer insolation at 37° N. The temperature increased with high frequency and amplitude oscillations, with strong aeolian activity and low total organic carbon accumulation during the Early Holocene. The temperature was maintained at a high and stable level, with the weakest aeolian activity and intensified pedogenesis during the Middle Holocene. The temperature decreased at a high rate, with renewed aeolian activity and weak pedogenesis during the Late Holocene.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Qinghai Provincial Science and Technology Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3