Computational Fluid Dynamics Analysis of Wet Dust Removal in High-Gravity Countercurrent Rotating Packed Bed

Author:

Guo Shuwei1,Liu Youzhi1,Zhang Chao1,Zhang Chengqian1,Wang Shufei1,Li Yuliang1,Cheng Shangyuan1

Affiliation:

1. Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China

Abstract

High-gravity wet dust removal technology has attracted much attention because of its potential to cut liquid into smaller liquid droplets and lower energy consumption. However, the complex structure and the high-speed rotation of the rotating packed bed do not allow us to analyze the flow field using conventional methods, and thus the capture mechanism of fine particles in a high-gravity environment is poorly understood. In this study, a two-dimensional computational fluid dynamics model was established to investigate the distribution of the gas–liquid two-phase flow field inside of a rotating packed bed. The characteristics of the flow field, such as the liquid form, gas–liquid contact time, and gas flow path, were investigated, and the droplet size distribution and gas–liquid slip velocity were quantitatively analyzed. The inertial capture efficiency was calculated using the Stokes number, and the dust removal efficiency distribution in the rotating packed bed was compared. The reason for the high collection efficiency of fine particles by the high-gravity wet dust removal technology was explained by numerical simulations. Two new structures were designed to improve the total dust removal efficiency.

Funder

National Natural Science Foundation of China

the Fundamental Research Program of Shanxi Province

the National Natural Science Foundation of China

the 18th graduate science and technology project of North University of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3