Calibration for Improving the Medium-Range Soil Temperature Forecast of a Semiarid Region over Tibet: A Case Study

Author:

Guo Yakai12,Yuan Baojun12,Su Aifang12,Shao Changliang3,Gao Yong4

Affiliation:

1. China Meteorological Administration Henan Meteorological Bureau, Zhengzhou 450003, China

2. China Meteorological Administration Key Laboratory of Agro Meteorological Support and Application Technology of Henan Province, Zhengzhou 450003, China

3. China Meteorological Administration Meteorological Observation Centre, Beijing 100081, China

4. China Meteorological Administration Tibet Meteorological Observatory, Lhasa 850000, China

Abstract

The high complexity of the parameter–simulation problem in land surface models over semiarid areas makes it difficult to reasonably estimate the surface simulation conditions that are important for both weather and climate in different regions. In this study, using the dense site datasets of a typical semiarid region over Tibet and the Noah land surface model with the constrained land parameters of multiple sites, an enhanced Kling–Gupta efficiency criterion comprising multiple objectives, including variable and layer dimensions, was obtained, which was then applied to calibration schemes based on two global search algorithms (particle swarm optimization and shuffled complex evaluation) to investigate the site-scale spatial complexities in soil temperature simulations. The calibrations were then compared and further validated. The results show that the Noah land surface model obtained reasonable simulations of soil moisture against the observations with fine consistency, but the negative fit and huge spatial errors compared with the observations indicated its weak ability to simulate the soil temperature over regional semiarid land. Both calibration schemes significantly improved the soil moisture and temperature simulations, but particle swarm optimization generally converged to a better objective than shuffled complex evaluation, although with more parameter uncertainties and less heterogeneity. Moreover, simulations initialized with the optimal parameter tables for the calibrations obtained similarly sustainable improvements for soil moisture and temperature, as well as good consistency with the existing soil reanalysis. In particular, the soil temperature simulation errors for particle swarm optimization were unbiased, while those for the other method were found to be biased around −3 K. Overall, particle swarm optimization was preferable when conducting soil temperature simulations, and it may help mitigate the efforts in surface forecast improvement over semiarid regions.

Funder

Henan Provincial Natural Science Foundation Project

Science and Technology Project on Innovation Ecosystem Construction at Zhengzhou Supercomputing Center in Henan province

Application Technology Research Fund Project at CMA Henan Provincial Key Laboratory of Agricultural Meteorological Research Institute

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3