Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics

Author:

Wang Mengyao1,Dai Xiaoyan1,Zhang Hao1ORCID

Affiliation:

1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

Abstract

With China’s rapid industrialization and urbanization in the process of socio-economic development, the extensive use of energy has resulted in a large amount of CO2 emissions, which puts great pressure on China’s carbon emission reduction task. Through multivariate socio-economic data, this paper proposes an extraction and screening method of multivariate variables based on land-use types, and the downscaled spatial decomposition of carbon emissions at different scales was carried out by using the spatial lag model (SLM). This paper makes up for the shortcomings of previous studies, such as an insufficient modeling scale, simple modeling variables, limited spatio-temporal span of spatial decomposition, and no consideration of geographical correlation. Based on the results of the spatial decomposition of carbon emissions, this paper explores the spatial and temporal dynamics of carbon emissions at different scales. The results showed that SLM is capable of downscaling the spatialization of carbon emissions with high precision, and the continuity of the decomposition results at the provincial scale is stronger, while the differences of the decomposition results at the municipal scale are more obvious within the municipal units. In terms of the spatial and temporal dynamics of CO2 emissions, carbon emissions at both scales showed a significant positive correlation. The dominant spatial correlation types are “Low–Low” at the provincial level, and “Low–Low” and “High–High” at the municipal level. The smaller spatial scope is more helpful to show the geographic dependence and geographic differences of China’s carbon emissions. The findings of this paper will help deepen the understanding of the spatial and temporal changes of carbon emissions in China. They will provide a scientific basis for the formulation of feasible carbon emission reduction policies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3