Temperature Inversion and Particulate Matter Concentration in the Low Troposphere of Cergy-Pontoise (Parisian Region)

Author:

Lagmiri Souad1,Dahech Salem1ORCID

Affiliation:

1. Research Center for the Organization and Dissemination of Geographic Information (PRODIG), UMR 8586 (CNRS), Paris City University, 75013 Paris, France

Abstract

This study aims to elucidate the influence of meteorological conditions on particle levels in Cergy-Pontoise. It explores the temporal variability of PM10 pollution days by associating them with the vertical temperature profile derived from conventional radiosondes from 2013 to 2022 (regional station). The results indicate that nearly 80% of exceedance days were associated with thermal inversions, primarily observed in winter and typically lasting 1 to 3 days. Analysis of winter thermal inversion characteristics suggests that those linked to pollution primarily occur near the ground, with higher intensity in December (12.1 °C) and lower in February (10.3 °C). Persistent inversions (extended nocturnal by diurnal inversion) account for 91.4% of the total inversions associated with high concentrations. Captive balloon soundings and temperature measurements at different altitudes were conducted during the winter of 2022/2023 to clarify thermal inversion in the Oise Valley at the center of Cergy-Pontoise. The results highlight three nocturnal wind circulation mechanisms in the valley, including downslope flow, circulation influenced by an urban heat island, and mechanical air evacuation under an inversion layer towards the less steep East side of the valley. Analysis of PM with the temperature gradient in the Oise Valley shows a significant correlation, suggesting an increase in concentrations during locally detected inversions and a decrease during atmospheric disturbance.

Publisher

MDPI AG

Reference51 articles.

1. Hufty, A. (1976). Introduction à la Climatologie; P.U.F., Collection Magellan.

2. Inversions thermiques et leur influence sur la composition de la couche d’air de surface au-dessus de Moscou;Lokoshchenko;Izv. Atmos. Ocean. Phys.,2021

3. Aerosol and boundary-layer interactions and impact on air quality;Li;Natl. Sci. Rev.,2017

4. Temperature inversions in France—Part B: Spatial variations;Joly;Climatologie,2022

5. Seasonal variation of the temperature inversions over Athens, Greece;Kassomenos;Int. J. Climatol.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3