Evaluating the Effects of Raindrop Motion on the Accuracy of the Precipitation Inversion Algorithm by X-SAR

Author:

Yu Xueying1,Xie Yanan1,Wang Rui1ORCID

Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

Abstract

Precipitation has a profound impact on both human life and the natural environment. X-band synthetic aperture radar (X-SAR) utilizes high-resolution microwave remote-sensing technology, providing opportunities for global precipitation measurements. The current precipitation inversion algorithms from X-SAR measurements assume that precipitation particles remain relatively stationary with the ground. However, the motion of raindrops could potentially reduce the accuracy of these algorithms. In this study, we first established a functional relationship between raindrop motion and SAR echoes based on the standard deviation of the raindrop Doppler velocity spectrum. Secondly, an exploratory algorithm was proposed to retrieve rainfall distribution under the raindrop motion error model (RMM) and quantitatively calculate the precipitation inversion error caused by raindrop motion. In comparison to conditions where the atmosphere is stationary, when the standard deviation of the Doppler velocity spectrum of raindrops is 1.1 m/s, the relative error of the retrieved surface rain rate increases from 2.1% to 35.8%. Numerical simulations show that SAR echoes are sensitive to changes in the standard deviation of the Doppler velocity spectrum, and the impact of raindrop motion on the accuracy of X-SAR precipitation measurements cannot be neglected.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference42 articles.

1. Skofronick-Jackson, G.M., Draper, D.W., and Newell, D.A. (October, January 26). The Global Precipitation Measurement (GPM) Mission. Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA.

2. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, Multiyear, Combined-sensor Precipitation Estimates at Fine Scales;Huffman;J. Hydrometeorol.,2007

3. Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E., and Xie, P. (2015). NASA Global Precipitation Measurement Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., National Aeronautics and Space Administration. Version 4.5.

4. Imaging Geodesy-toward Centimeter-level Ranging Accuracy with TerraSAR-X;Eineder;IEEE Trans. Geosci. Remote Sens.,2011

5. Primary Exploration on Monitoring of River Pollution Based on Polarimetric Coherence Matrix;Chen;J. Remote Sens.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3