An Improved Deep Learning Approach Considering Spatiotemporal Heterogeneity for PM2.5 Prediction: A Case Study of Xinjiang, China

Author:

Wu Yajing123,Xu Zhangyan4ORCID,Xu Liping1,Wei Jianxin23ORCID

Affiliation:

1. College of Sciences, Shihezi University, Shihezi 832000, China

2. Xinjiang Land and Resources Information Center, Urumqi 830002, China

3. Xinjiang Lidar Applied Engineering Technology Research Center, Urumqi 830002, China

4. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

Abstract

Prediction of fine particulate matter with particle size less than 2.5 µm (PM2.5) is an important component of atmospheric pollution warning and control management. In this study, we propose a deep learning model, namely, a spatiotemporal weighted neural network (STWNN), to address the challenge of poor long-term PM2.5 prediction in areas with sparse and uneven stations. The model, which is based on convolutional neural network–bidirectional long short-term memory (CNN–Bi-LSTM) and attention mechanisms and uses a geospatial data-driven approach, considers the spatiotemporal heterogeneity effec It is correct.ts of PM2.5. This approach effectively overcomes instability caused by sparse station data in forecasting daily average PM2.5 concentrations over the next week. The effectiveness of the STWNN model was evaluated using the Xinjiang Uygur Autonomous Region as the study area. Experimental results demonstrate that the STWNN exhibits higher performance (RMSE = 10.29, MAE = 6.4, R2 = 0.96, and IA = 0.81) than other models in overall prediction and seasonal clustering. Furthermore, the SHapley Additive exPlanations (SHAP) method was introduced to calculate the contribution and spatiotemporal variation of feature variables after the STWNN prediction model. The SHAP results indicate that the STWNN has significant potential in improving the performance of long-term PM2.5 prediction at the regional station level. Analyzing spatiotemporal differences in key feature variables that influence PM2.5 provides a scientific foundation for long-term pollution control and supports emergency response planning for heavy pollution events.

Funder

National Natural Science Foundation of China

the Third Xinjiang Comprehensive Scientific Expedition

Corps Science and Technology Program Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3