Varying Drivers of 2013–2017 Trends in PM2.5 Pollution over Different Regions in China

Author:

Tao Yanan12,Liu Guangjin3,Sun Bowen3,Dong Yawei12,Cao Lei12,Zhao Bei12,Li Mei45,Fan Zeman3,Zhou Yaqing3,Wang Qiaoqiao3

Affiliation:

1. Shaanxi Environmental Monitoring Center Station, Xi’an 710043, China

2. Shaanxi Key Laboratory for Environmental Monitoring and Forewarning of Trace Pollutants, Xi’an 710054, China

3. College of Environment and Climate, Institute for Environment and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China

4. College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China

5. Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China

Abstract

A significant decrease in surface PM2.5 concentrations has been reported since the implementation of the Air Pollution Prevention and Control Action Plan in 2013. In this study, we use the GEOS-Chem model to simulate the trend in surface PM2.5 pollution in China from 2013 to 2017, as well as the relative contributions of emission reduction and meteorology. The simulated decline rate averaged over monitoring sites in China is around −4.7 μg m−3 yr−1 in comparison with the value of −6.4 μg m−3 yr−1 from observations. The model also captures the variations over different regions, with r in the range of 0.85–0.95. Based on the sensitivity tests against emissions and meteorology, the study finds that the decline in PM2.5 concentrations is mainly driven by the reduction in anthropogenic emissions. The variation in open biomass burning (OBB) is not significant, except in Northeast China (NEC) and Pearl River Delta (PRD), where the changes originated from OBB are 40% and 30% of those associated with anthropogenic emission reductions. Changes in meteorology from 2013 to 2017 led to significant increases in PM2.5 concentrations in most areas in China, except in NEC. The increase attributed to meteorology, to a large extent, could be explained by the significant decrease in surface wind speed (WS) and planetary boundary layer height (PBLH) between 2013 and 2017, combined with their negative correlation with PM2.5. The decrease in PM2.5 concentrations in NEC, on the other hand, could be explained by the significant decrease in relative humidity (RH) there combined with the positive correlation of RH with PM2.5, while the changes in WS and PBLH there are relatively small compared with other areas. The change in meteorology, therefore, hinders the improvement of air quality via emission controls in most of China. In Sichuan Basin (SCB), the increase due to meteorology almost compensates for the decrease associated with emission reduction, leading to the least change in PM2.5 concentrations, although the decrease due to emission controls is the largest compared with other areas.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangzhou Basic Research Program

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3