Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport?

Author:

Wang Baolin1,Sun Yuchun1,Sun Lei1,Liu Zhenguo1,Wang Chen1ORCID,Zhang Rui1,Zhu Chuanyong1,Yang Na1,Fan Guolan2,Sun Xiaoyan2,Xia Zhiyong2,Xu Hongyu2,Pan Guang2,Zhang Zhanchao2,Yan Guihuan3,Xu Chongqing13

Affiliation:

1. School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China

3. Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China

Abstract

Simultaneous measurements of atmospheric volatile organic compounds (VOCs), conventional gases and meteorological parameters were performed at an urban site in Jinan, East China, in June 2021 to explore the formation and evolution mechanisms of summertime ozone (O3) pollution events. O3 Episode Ⅰ, O3 Episode II, and non-O3 episodes were identified based on the China Ambient Air Quality Standards and the differences in precursor concentrations. The O3 concentrations in Episode I and Episode II were 145.4 μg/m3 and 166.4 μg/m3, respectively, which were significantly higher than that in non-O3 episode (90 μg/m3). For O3 precursors, VOCs and NOx concentrations increased by 48% and 34% in Episode I, and decreased by 21% and 27% in Episode II compared to non-O3 episode days. The analysis of the m,p-xylene to ethylbenzene ratio (X/E) and OH exposure demonstrated that the aging of the air masses in Episode II was significantly higher than the other two episodes, and the differences could not be explained by localized photochemical consumption. Therefore, we speculate that the high O3 concentrations in Episode II were driven by the regional transport of O3 and its precursors. Backward trajectory simulations indicated that the air masses during Episode II were concentrated from the south. In contrast, the combination of high precursor concentrations and favorable meteorological conditions (high temperatures and low humidity) led to an excess of O3 in Episode I. Positive matrix factorization (PMF) model results indicated that increased emissions from combustion and gasoline vehicle exhausts contributed to the elevated concentrations of VOCs in Episode I, and solvent usage may be an important contributor to O3 formation. The results of this study emphasize the importance of strengthening regional joint control of O3 and its precursors with neighboring cities, especially in the south, which is crucial for Jinan to mitigate O3 pollution.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Basic Research Program for Integration Pilot of Science, Education and Industry of Qilu Univer-sity of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3