A Generalised Additive Model and Deep Learning Method for Cross-Validating the North Atlantic Oscillation Index

Author:

Wahiduzzaman Md1ORCID,Yeasmin Alea2ORCID

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. E-3 Complexity Ltd., Sydney, NSW 2000, Australia

Abstract

This study introduces an innovative analytical methodology for examining the interconnections among the atmosphere, ocean, and society. The primary area of interest pertains to the North Atlantic Oscillation (NAO), a notable phenomenon characterised by daily to decadal fluctuations in atmospheric conditions over the Northern Hemisphere. The NAO has a prominent impact on winter weather patterns in North America, Europe, and to some extent, Asia. This impact has significant ramifications for civilization, as well as for marine, freshwater, and terrestrial ecosystems, and food chains. Accurate predictions of the surface NAO hold significant importance for society in terms of energy consumption planning and adaptation to severe winter conditions, such as winter wind and snowstorms, which can result in property damage and disruptions to transportation networks. Moreover, it is crucial to improve climate forecasts in order to bolster the resilience of food systems. This would enable producers to quickly respond to expected changes and make the required modifications, such as adjusting their food output or expanding their product range, in order to reduce potential hazards. The forecast centres prioritise and actively research the predictability and variability of the NAO. Nevertheless, it is increasingly evident that conventional analytical methods and prediction models that rely solely on scientific methodologies are inadequate in comprehensively addressing the transdisciplinary dimension of NAO variability. This includes a comprehensive view of research, forecasting, and social ramifications. This study introduces a new framework that combines sophisticated Big Data analytic techniques and forecasting tools using a generalised additive model to investigate the fluctuations of the NAO and the interplay between the ocean and atmosphere. Additionally, it explores innovative approaches to analyze the socio-economic response associated with these phenomena using text mining tools, specifically modern deep learning techniques. The analysis is conducted on an extensive corpora of free text information sourced from media outlets, public companies, government reports, and newspapers. Overall, the result shows that the NAO index has been reproduced well by the Deep-NAO model with a correlation coefficient of 0.74.

Funder

National Science Foundation of China

Ministry of Science and Technology, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3