Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine

Author:

Sabanov Sergei1ORCID,Qureshi Abdullah Rasheed1ORCID,Korshunova Ruslana1,Kurmangazy Gulim1

Affiliation:

1. School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Particulate matter (PM) in the context of underground mining results from various operations such as rock drilling and blasting, ore loading, hauling, crushing, dumping, and from diesel exhaust gases as well. These operations result in the formation of fine particles that can accumulate in the lungs of mineworkers. The lung deposited surface area (LDSA) concentration is a variant solution to evaluate potential health impacts. The aim of this study is to analyse PM and LDSA concentrations in the operational workings of the oil shale underground mine. Experimental measurements were carried out by a direct-reading real-time PM monitor, Dusttrak DRX, and a multimetric fine particle detector, Naneous Partector 2, during the loading and dumping processes using the diesel engine loader. Consequently, the analysis was conducted on PM, LDSA, particle surface area concentration (SA), average particle diameter (d), particle number concentration (PNC), and particle mass (PM0.3), producing a few valuable correlation factors. Averaged LDSA was around 1433 μm2/cm3 and reached maximum peaks of 2140 μm2/cm3 during the loading, which was mostly related to diesel exhaust emissions, and within the dumping 730 μm2/cm3 and 1840 μm2/cm3, respectively. At the same time, average PM1 was about 300 μg/ m3 during the loading, but within the dumping peaks, it reached up to 10,900 μg/ m3. During the loading phase, particle diameter ranged from 30 to 90 nm, while during the dumping phase peaks, it varied from 90 to 160 nm. On this basis, a relationship between PNC and particle diameter has been produced to demonstrate an approximate split between diesel particulate matter (DPM) and oil shale dust diameters. This study offers important data on PM and LDSA concentration that can be used for estimating potential exposure to miners at various working operations in the oil shale underground mines, and will be used for air quality control in accordance with establishing toxic aerosol health effects.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference63 articles.

1. Source apportionment of airborne fine particulate matter in an underground mine;McDonald;J. Air Waste Manag. Assoc.,2003

2. Generation and quantification of hazardous dusts from coal mining in the indian context;Ghose;Environ. Monit. Assess.,2007

3. Particulate matter characteristics, dynamics, and sources in an underground mine;Saarikoski;Aerosol Sci. Technol.,2018

4. Sources and composition of particulate matter in boreal arctic environment next to an active mining area;Timonen;Boreal Environ. Res.,2018

5. Characterization of fine particle material in ambient air and personal samples from an underground mine;McDonald;Aerosol Sci. Technol.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3