Study on the Influence of the Cell Structure on the Pressure Drop of Gasoline Particulate Filter

Author:

Huang Lishuan1,He Chao2,Yang Nan1,Li Jiaqiang1,Chen Yanlin1,Yu Haisheng1,Wang Dongge1,Yao Yangyu1

Affiliation:

1. School of Mechanics and Transportation, Southwest Forestry University, Kunming 650224, China

2. Dehong Vocational College, Dehong 678400, China

Abstract

The cell structure of a gasoline particulate filter (GPF) is made up of thousands of individual cells. Although the symmetric square cell structure of the GPF is commonly used internationally, several cell designs have been proposed to reduce the pressure drop in the GPF trapping process. The aim of this paper was to use AVL-Fire software to establish GPF models of different cell structures, mainly including the symmetric square cell structure, asymmetric square cell structure, and symmetric hexagonal cell structure, and analyze the GPF pressure drop characteristics of different cell structures according to the carrier structural parameters and altitude. The results show that compared with the pressure drop of the symmetric square cell structure, the pressure drop of the asymmetric cell structure with inlet/outlet side length ratios ranging from 1.1 to 1.4 is decreased by 4.61%, 9.07%, 12.19%, and 13.22%, respectively, and the pressure drop of the symmetric hexagonal cell structure is decreased by 33.17%. Both asymmetric and symmetric hexagonal cell structure GPFs can decrease the pressure drop during trapping by increasing the cell density. From 200 CPSI to 300 CPSI, the pressure drop of the asymmetric cell structure with inlet/outlet side length ratios ranging from 1.1 to 1.4 is decreased by 20.43%, 20.53%, 20.39%, and 18.56%, respectively, and the pressure drop of the symmetric hexagonal cell structure is decreased by 18.70%. The pressure drop values of GPFs with asymmetric and symmetric hexagonal cell structures show an increasing trend with an increasing filter wall thickness and inlet/outlet plug length. The pressure drop values of GPFs with asymmetric and symmetric hexagonal cell structures show an increasing trend with an increasing altitude, and the larger the inlet/outlet ratio, the more significant the increase in the pressure drop.

Funder

National Natural Science Foundation of China

Yunnan Provincial High-Level Talent Support Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3