Litter Mass Loss of the Invasive Rhus typhina L. and Native Koelreuteria paniculata Laxm. Trees Alters Soil N-Fixing Bacterial Community Composition under Different N Forms

Author:

Li Yue1,Li Chuang1,Cheng Huiyuan12,Xu Zhelun1,Zhong Shanshan1,Zhu Mawei1,Wei Yuqing1,Xu Zhongyi1,Du Daolin3,Wang Congyan145ORCID,Zhang Huanshi6

Affiliation:

1. School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

3. Jingjiang College, Jiangsu University, Zhenjiang 212013, China

4. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China

5. Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China

6. College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China

Abstract

Soil N-fixing bacterial (NFB) community may facilitate the successful establishment and invasion of exotic non-nitrogen (N) fixing plants. Invasive plants can negatively affect the NFB community by releasing N during litter decomposition, especially where N input from atmospheric N deposition is high. This study aimed to quantitatively compare the effects of the invasive Rhus typhina L. and native Koelreuteria paniculata Laxm. trees on the litter mass loss, soil physicochemical properties, soil enzyme activities, and the NFB. Following N supplementation at 5 g N m−2 yr−1 in four forms (including ammonium, nitrate, urea, and mixed N with an equal mixture of the three individual N forms), a litterbag-experiment was conducted indoors to simulate the litter decomposition of the two trees. After four months of decomposition, the litter cumulative mass losses of R. typhina under the control, ammonium chloride, potassium nitrate, urea, and mixed N were 57.93%, 57.38%, 58.69%, 63.66%, and 57.57%, respectively. The litter cumulative mass losses of K. paniculata under the control, ammonium chloride, potassium nitrate, urea, and mixed N were 54.98%, 57.99%, 48.14%, 49.02%, and 56.83%, respectively. The litter cumulative mass losses of equally mixed litter from both trees under the control, ammonium chloride, potassium nitrate, urea, and mixed N were 42.95%, 42.29%, 50.42%, 46.18%, and 43.71%, respectively. There were antagonistic responses to the co-decomposition of the two trees. The litter mass loss of the two trees was mainly associated with the taxonomic richness of NFB. The form of N was not significantly associated with the litter mass loss in either species, the mixing effect intensity of the litter co-decomposition of the two species, and NFB alpha diversity. Litter mass loss of R. typhina was significantly higher than that of K. paniculata under urea. The litter mass loss of the two trees under the control and N in four forms mainly affected the relative abundance of numerous NFB taxa, rather than NFB alpha diversity.

Funder

Scientific Research Start-up Fund for High-level Talents of Jinling Institute of Technology

Open Science Research Fund of Key Laboratory of Forest Plant Ecology, Ministry of Education (Northeast Forestry University), China

National Natural Science Foundation of China

Special Research Project of School of Emergency Management, Jiangsu University

Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province

Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3