Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks

Author:

Cheng Nana12,Jing Deji3,Gu Zhenyu12,Cai Xingnong3,Shi Zhanhong3,Li Sujing3,Chen Liang4,Li Wei3,Wang Qiaoli5ORCID

Affiliation:

1. Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China

2. Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou 310007, China

3. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

4. Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China

5. College of Environment, Zhejiang University of Technology, Hangzhou 310032, China

Abstract

Ozone pollution in chemical industrial parks is severe and complicated and is significantly influenced by pollutant emissions and meteorological parameters. In this study, we innovatively investigated the formation rules of ozone by using observation-based analyses and a gradient-boosting decision tree (GBDT) model, focusing on a typical chemical industrial park located in the Yangtze River Delta of China. The results revealed that ozone concentration was positively correlated with temperature while negatively correlated with NO2 concentration and relative humidity (RH). Ozone pollution was predominantly observed from April to October (M4–10). The optimized GBDT model was subsequently utilized to establish a specific and quantifiable relationship between each single dominant impact factor (RH, NO2, temperature, and PM2.5) and ozone within a complex and uncertain multi-factor context during M4–10. Detailed discussions were conducted on the reaction rate of ozone-related to different levels of RH and temperature. The accumulation of ozone was favored by high temperature and low RH, with the maximum ozone concentration observed at the RH of 50% and the temperature of 35 °C. The NO2-O3 change curve exhibited distinct phases, including a period of stability, gradual increase, rapid increase, and equilibrium. During the second and third periods, the ratio of ozone production to NO2 consumption was 0.10 and 2.73, respectively. Furthermore, there was a non-monotonic relationship between variations in ozone concentration and PM2.5 concentration. Hence, it is imperative to implement fine control strategies in the park, such as adopting seasonal production strategies, implementing targeted measures for controlling NOx and active VOCs, and employing special control methods during periods of high temperature. This study provides aid in achieving effective management of localized ozone pollution and ensuring compliance with air quality standards.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3