Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring

Author:

Wang Qingqing12,Ao Ruoxi1,Chen Hongwei1,Li Jialin2,Wei Lianfang2ORCID,Wang Zifa2

Affiliation:

1. Engineering Research Center of Clean and Low-Carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China

2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

The air quality in educational campuses affects the health and work efficiency of teachers and students. Studies into this matter are of great significance for optimizing the management of campus living environments. Low-cost online sensors to monitor PM2.5 and CO2 levels were used in typical functional areas of a university campus in Beijing, China, including offices, dormitories, leisure spaces, canteens, and laboratories. By comparing the findings with data from nearby national monitoring stations, the seasonal and spatial variations in PM2.5 and CO2 concentrations were analyzed. Findings indicate PM2.5 levels within the campus were notably lower compared to the surrounding urban environment. There was variation in PM2.5 and CO2 concentrations across different functional areas. Typically, indoor PM2.5 levels were lower than outdoor ones, while CO2 concentrations in enclosed indoor spaces with human activities progressively escalated. The main internal emission sources affecting the PM2.5 level on campus included traffic emissions, dust generated by human activities, and emissions from catering. In contrast, in areas with better green coverage or where a lake system participates in the atmospheric circulation, the PM2.5 level and CO2/PM2.5 were lower. This indicates that the cleansing impact of plants and aquatic systems is instrumental in lowering PM2.5 concentrations, offering healthier leisure spaces. Seasonal variations also impact PM2.5 levels. During the non-heating period, less pollution source emissions led to decreased outdoor PM2.5 concentrations. The campus monitoring sites experienced an approximate 5 µg/m3 and 29 µg/m3 reduction in the average PM2.5 levels as compared to the PM2.5 of the surrounding urban environment, respectively, during the non-heating and heating period. During indoor activities or sleep, CO2 levels can build up to as high as 2303 ppm due to breathing. It is advisable to stay indoors on days when pollution levels are high, whereas on days with clean air, it is healthier to be outdoors or to air out indoor areas by opening windows. Our research provides clearer scientific evidence for incorporating behavioral strategies for improving air quality into both daily work and life. Moreover, the findings are quite meaningful for the widespread adoption of low-cost sensor monitoring in various environments, with applications beyond just the campus settings.

Funder

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry

Talent Fund of Beijing Jiaotong University

Beijing Jiaotong University Training Program of Research for Undergraduates

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3