Influences of Cloud Microphysics on the Components of Solar Irradiance in the WRF-Solar Model

Author:

Zhou Xin12ORCID,Liu Yangang1,Shan Yunpeng13,Endo Satoshi1ORCID,Xie Yu4,Sengupta Manajit4

Affiliation:

1. Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA

2. Atmospheric Science Department, Cornell University, Ithaca, NY 14853, USA

3. Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

4. National Renewable Energy Laboratory, Golden, CO 80401, USA

Abstract

An accurate forecast of Global Horizontal solar Irradiance (GHI) and Direct Normal Irradiance (DNI) in cloudy conditions remains a major challenge in the solar energy industry. This study focuses on the impact of cloud microphysics on GHI and its partition into DNI and Diffuse Horizontal Irradiance (DHI) using the Weather Research and Forecasting model specifically designed for solar radiation applications (WRF-Solar) and seven microphysical schemes. Three stratocumulus (Sc) and five shallow cumulus (Cu) cases are simulated and evaluated against measurements at the US Department of Energy’s Atmospheric Radiation Measurement (ARM) user facility, Southern Great Plains (SGP) site. Results show that different microphysical schemes lead to spreads in simulated solar irradiance components up to 75% and 350% from their ensemble means in the Cu and Sc cases, respectively. The Cu cases have smaller microphysical sensitivity due to a limited cloud fraction and smaller domain-averaged cloud water mixing ratio compared to Sc cases. Cloud properties also influence the partition of GHI into DNI and DHI, and the model simulates better GHI than DNI and DHI due to a non-physical error compensation between DNI and DHI. The microphysical schemes that produce more accurate liquid water paths and effective radii of cloud droplets have a better overall performance.

Funder

US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3