Three-Dimensional Computerized Ionospheric Tomography over Maritime Areas Based on Simulated Slant Total Electron Content along Small-Satellite Constellation–Automatic Identification System Signal Rays

Author:

Li Haiying1,Xu Bin1,Wang Cheng2,Zhao Haisheng1,Jin Ruimin1,Zhang Hongbo1,Wang Feifei1

Affiliation:

1. National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

2. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

Abstract

Ionospheres over sea areas have an inevitable impact on maritime–satellite communications; however, due to geographic constraints, ionospheric observation and analysis over sea areas are far from adequate. In our paper, slant total electron content (STEC) along small-satellite constellation–automatic identification system (AIS) signal rays is used for computerized ionospheric tomography (CIT) over sea areas, and small-satellite constellations can provide more effective signal rays than a single satellite. An adjustment factor δ is introduced to optimize the initial electron density for the multiplicative algebraic reconstruction technique (MART). The CIT results reconstructed by a traditional MART and our new method at 00:00 and 06:00, 15 March 2022, are compared, and our new method produces about a 15% and over 40% improvement in average deviation (AD) and root-mean-square error (RMSE). The results show that the bigger the difference between δ and 1, the better improvement will be in the 3D CIT process. The initial electron density is well selected during CIT when δ is approximate to 1, which is the case at 12:00, and the reconstructed 3D electron density, applying the initial ne and the adjusted initial ne, are both close to the true electron density. The small-satellite constellation–AIS signals are valuable resources for electron density reconstruction in sea areas.

Funder

National Natural Science Foundation of China

National Key Laboratory Foundation of Electromagnetic Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3