Affiliation:
1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2. University of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology Campus, Beijing 101408, China
3. Water Engineering Department, Faculty of Agricultural Sciences, University of Guilan, Rasht P.O. Box 41889-58643, Iran
Abstract
Climate classification plays a fundamental role in understanding climatic patterns, particularly in the context of a changing climate. This study utilized hourly meteorological data from 36 major cities in China from 2011 to 2021, including 2 m temperature (T2), relative humidity (RH), and precipitation (PRE). Both original hourly sequences and daily value sequences were used as inputs, applying two non-hierarchical clustering methods (k-means and k-medoids) and four hierarchical clustering methods (ward, complete, average, and single) for clustering. The classification results were compared using two clustering evaluation indices: the silhouette coefficient and the Calinski–Harabasz index. Additionally, the clustering was compared with the Köppen–Geiger climate classification based on the maximum difference in intra-cluster variables. The results showed that the clustering method outperformed the Köppen–Geiger climate classification, with the k-medoids method achieving the best results. Our research also compared the effectiveness of climate classification using two variables (T2 and PRE) versus three variables, including the addition of hourly RH. Cluster evaluation confirmed that incorporating the original sequence of hourly T2, PRE, and RH yielded the best performance in climate classification. This suggests that considering more meteorological variables and using hourly observation data can significantly improve the accuracy and reliability of climate classification. In addition, by setting the class numbers to two, the clustering methods effectively identified climate boundaries between northern and southern China, aligning with China’s traditional geographical division along the Qinling–Huaihe River line.
Funder
Shenzhen Municipal Committee of Science and Technology Innovation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献