Simulation Performance of Temperature and Precipitation in the Yangtze River by Different Cumulus and Land Surface Schemes in RegCM4

Author:

Yan Sheng1,Li Bingxue2,Du Lijuan3,Wang Dequan4,Huang Ya5ORCID

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

2. Department of the Aviation Manufacturing, Shanghai Civil Aviation College, Shanghai 200232, China

3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

4. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

5. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

To improve the simulation performance of the RegCM4 model in climate simulations over the Yangtze River Basin (YRB), it is essential to determine the optimal cumulus convection and land surface process schemes from the numerous physical parameterization options within RegCM4. In this study, we selected five cumulus convection schemes (Kuo, Grell, Emanuel, Tiedtke, and Kain–Fritsch) and three land surface process schemes (BATS, CLM3.5, and CLM4.5) to configure 72 mixed schemes. Four years of short-term simulations (1990–1993) with a horizontal resolution of 50 km were conducted using ERA-Interim as the initial and boundary conditions for the 72 schemes. The climate simulation performance of all schemes in the YRB was comprehensively evaluated using a multi-criteria scoring approach. The results indicate that among the selected cumulus convection schemes, the Kain–Fritsch scheme, applied to both ocean and land, demonstrates optimal performance in simulating precipitation over the YRB, with spatial correlation coefficients between simulated and observed annual precipitation around 0.3. Compared to the Community Land Models (CLM3.5 and CLM4.5), BATS exhibits superior capabilities in reproducing the temperature features of the region, with spatial correlation coefficients between simulated and observed values typically exceeding 0.99 and standard deviations within 1.25 °C. Under the optimal KF scheme, the simulated soil moisture in the YRB using CLMs is notably drier, ranging from −7.79 to −8.39 kg/m2, compared to that achieved with BATS. The findings provide a localized reference for the parameterization schemes of RegCM4 in the YRB.

Funder

Natural Science Foundation of Jiangsu Province

Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research

Jiangsu Funding Program for Excellent Postdoctoral Talent

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3