Improving Air Quality Prediction via Self-Supervision Masked Air Modeling

Author:

Chen Shuang1,He Li2,Shen Shinan1,Zhang Yan134,Ma Weichun1345

Affiliation:

1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

2. Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China

3. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200433, China

4. Shanghai Key Laboratory of Policy Simulation and Assessment for Ecology and Environment Governance, Shanghai 200433, China

5. Institute of Eco-Chongming (IEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China

Abstract

Presently, the harm to human health created by air pollution has greatly drawn public attention, in particular, vehicle emissions including nitrogen oxides as well as particulate matter. How to predict air quality, e.g., pollutant concentration, efficiently and accurately is a core problem in environmental research. Developing a robust air quality predictive model has become an increasingly important task, holding practical significance in the formulation of effective control policies. Recently, deep learning has progressed significantly in air quality prediction. In this paper, we go one step further and present a neat scheme of masked autoencoders, termed as masked air modeling (MAM), for sequence data self-supervised learning, which addresses the challenges posed by missing data. Specifically, the front end of our pipeline integrates a WRF-CAMx numerical model, which can simulate the process of emission, diffusion, transformation, and removal of pollutants based on atmospheric physics and chemical reactions. Then, the predicted results of WRF-CAMx are concatenated into a time series, and fed into an asymmetric Transformer-based encoder–decoder architecture for pre-training via random masking. Finally, we fine-tune an additional regression network, based on the pre-trained encoder, to predict ozone (O 3) concentration. Coupling these two designs enables us to consider the atmospheric physics and chemical reactions of pollutants while inheriting the long-range dependency modeling capabilities of the Transformer. The experimental results indicated that our approach effectively enhances the WRF-CAMx model’s predictive capabilities and outperforms pure supervised network solutions. Overall, using advanced self-supervision approaches, our work provides a novel perspective for further improving air quality forecasting, which allows us to increase the smartness and resilience of the air prediction systems. This is due to the fact that accurate prediction of air pollutant concentrations is essential for detecting pollution events and implementing effective response strategies, thereby promoting environmentally sustainable development.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Committee of Science and Technology, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3