The Diagnostic Analysis of the Thermodynamic Characteristics of Typhoon “Maysak” during Its Transformation Process

Author:

Zhou Guanbo1,Du Han2

Affiliation:

1. National Meteorological Center, China Meteorological Administration, Beijing 100081, China

2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

This study utilized high-resolution numerical simulation data from the WRF model to conduct a thermodynamic diagnosis of the process by which Typhoon “Maysak” transformed and merged with the Northeast Cold Vortex. The results indicated that the continuous intrusion of cold vortex air and the relative cold advection formed by the typhoon’s movement led to the demise of the typhoon’s warm core structure. The low-level low-pressure convergence and upper-level high-pressure divergence structure disappeared. After the transformation and merging with the Northeast Cold Vortex, the cyclone became cold throughout the entire layer, with a cold center appearing at low levels. During the process of the typhoon’s transformation and merging with the Northeast Cold Vortex, cold air accumulated near the low levels of the cyclone, causing the pseudo-adiabatic potential temperature lines to tilt and resulting in the slanted development of vertical vorticity in the mid-levels of the cyclone. After the typhoon transformed and merged with the Northeast Cold Vortex, the positive vertical vorticity advection at the bottom of the upper-level cold vortex trough promoted the cyclone’s development directly from the mid-levels to the upper levels, while the jet stream at the bottom of the cold vortex trough facilitated the maintenance of the positive vertical vorticity advection. Concurrently, the thermodynamic shear vorticity parameter could describe the typical vertical structure characteristics of the dynamic and thermodynamic fields above the rain area during the typhoon transformation process. In terms of temporal evolution trends, there was a certain correspondence with the development and movement of the ground rain area, and the perturbation thermodynamic divergence parameter had a good indicative effect on the area of heavy rainfall.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

CMA Innovation and Development Project

National Natural Sciences Foundations of China

Publisher

MDPI AG

Reference32 articles.

1. Zheng, X., Zhang, T., and Bai, R. (1992). Rainstorm in Northeast China, China Meteorological Press. (In Chinese).

2. The climatological characteristics of Northeast cold vortex in China;Sun;Q. J. Appl. Meteorol.,1994

3. A study of the persistence activity of Northeast cold vortex in China;Sun;Chin. J. Atmos. Sci.,1997

4. Advances in the study of rainstorm in Northeast China;Wang;Adv. Earth Sci.,2007

5. Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China;Hu;Meteor. Atmos. Phys.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3