Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014

Author:

Sun Yafei1,Jiang Liming2ORCID,Gao Ning1,Gao Songfeng1,Li Junjie1

Affiliation:

1. School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Pingdingshan 467041, China

2. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China

Abstract

In recent decades, glaciers in the southeastern Tibetan Plateau (SETP) have been rapidly melting and showing a large scale of glacier mass loss. Due to the lack of large-scale, high-resolution, and high-precision observations, knowledge on the spatial distribution of the glacier mass balance and the response to climate change is limited in this region. We propose a TanDEM-X bi-static InSAR (Interferometric Synthetic Aperture Radar) algorithm with a non-local mean filter method and difference strategy, to improve the precision of glacier surface elevation change detection. Moreover, we improved the glacier mass balance estimation algorithm with a correction method for multi-source system errors and an uncertainty evaluation method based on error propagation theory to reduce the uncertainty of estimations. We used 13 pairs of TanDEM-X bi-static InSAR images to obtain the glacier mass balance data for the entire SETP. The total area of glaciers monitored was 5821 km2 and the total number of glaciers monitored was 2321; the glacier surface elevation change rate was −0.505 ± 0.005 m/yr, and the glacier mass balance estimation was −454.5 ± 13.1 mm w.eq. during 2000–2014. Additionally, we analyzed the spatial distribution of the glacier mass balance within the SETP using the sub-watershed analysis method. The results showed that the mass loss rate had a decreasing trend from the southeast to the northwest. Furthermore, the temperature change and the glacier mass loss rate showed a positive correlation from the southeast to the northwest in this region. This study greatly advances our understanding of the regularities of glacier dynamics in this region, and can provide scientific support for major national goals such as the rational utilization of surrounding water resources and construction of important transportation projects.

Funder

Henan Science and Technology Research Fund Program

Research and Development and Application of Key Technologies of Urban Flood Control and Emergency Management Based on Beidou

Research Funds for the Henan University of Urban Construction

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3