Exploring the Effects of Elevated Ozone Concentration on Physiological Processes in Summer Maize in North China Based on Exposure–Response Relationships

Author:

Wang Mansen12,Xie Shuyang23,Lun Xiaoxiu1,He Zhouming4,Liu Xin23,Lv Wenjun2,Wang Luxi1ORCID,Wang Tian1,Liu Junfeng23ORCID

Affiliation:

1. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

2. Research Center for Eco-Environmental of Sciences, Chinese Academy of Sciences, Beijing 100085, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Kunming Yangzonghai National Tourism Resort Management Committee, Kunming 650500, China

Abstract

As the predominant pollutant in North China during the summer months, ozone (O3) exhibits strong oxidizing capabilities. Long-term exposure of crops to ozone will cause a decrease in various physiological indicators, affect crop yields, and pose a serious threat to food security. The North China Plain, the primary region for summer maize production in China, is afflicted by ozone pollution. In order to explore the effects of increasing O3 concentration on the physiological characteristics and photosynthetic characteristics of summer maize, this study took summer-sown maize as the research object and carried out the ozone exposure experiment with open-top chamber (OTCs). The response of maize to O3 exposure was studied by measuring the damage, physiological indexes and photosynthetic indexes in the silking stage (late July to late August) and filling stage (late August to mid-September). The results indicated the following: (1) Prolonged exposure to high O3 concentrations exacerbated leaf chlorosis and damage. (2) The increase in O3 concentration caused lipid peroxidation. The content of malondialdehyde was significantly increased by 32.6%~122.56%. At the same time, chlorophyll was destroyed and decreased by 2.17% to 4.86%. Under ozone exposure, ascorbic acid content was significantly increased by 7.58%~35.69%. The antioxidant indexes of maize were more sensitive during the filling stage. (3) Under O3 exposure, photosynthetic rate, stomatal conductance and intercellular carbon dioxide concentration decreased significantly, indicating that the influence of O3 on maize was mainly due to stomatal limitation. Water use efficiency and transpiration rate decreased significantly. The water use efficiency decreased by 12.84%~35.62%, which led to the weakening of the carbon fixation ability of maize and affected the normal growth and development of maize.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3