The Heterogeneous Effects of Microscale-Built Environments on Land Surface Temperature Based on Machine Learning and Street View Images

Author:

Zhang Tianlin1ORCID,Lin Zhao2,Wang Lei1ORCID,Zhang Wenzheng1,Zhang Yazhuo3,Hu Yike1

Affiliation:

1. School of Architecture, Tianjin University, Tianjin 300073, China

2. Huaxi Construction Co., Ltd., CCCC Second Highway Engineering Co., Ltd., Chengdu 610000, China

3. School of Civil Engineering, Tianjin University, Tianjin 300073, China

Abstract

Global climate change has exacerbated alterations in urban thermal environments, significantly impacting the daily lives and health of city residents. Measuring and understanding urban land surface temperatures (LST) and their influencing factors is important in addressing global climate change and enhancing the well-being of residents. However, due to limitations in data precision and analytical methods, existing studies often overlook the microscale examination closely related to residents’ daily lives, and lack a deep exploration of the spatial heterogeneity of the influencing factors. This leads to these results being ineffective in guiding the planning and construction of cities. Taking Shenzhen as a case study, our study investigates the effects of various microscale build environment characteristics of LST using street view images and machine learning. A convolutional neural network model adopting the SegNet architecture is used to perform semantic segmentation on street view images, extracting features of the microscale urban-built environment. The LST is inverted through the Google Earth Engine (GEE) platform. By using Multiscale Geographically Weighted Regression (MGWR) models, our study reveals the comprehensive impact of the urban-built environment on LST and its significant spatial heterogeneity. The findings indicate that the proportions of sky, roads, and buildings are positively correlated with LST, while trees have a significant cooling effect. Although earth and water can reduce LST, their overall contribution is minimal due to limitations in their area and distribution patterns. This study not only reveals the key factors affecting urban LST at the microscale but also emphasizes the necessity of considering the spatial heterogeneity of these factors’ impacts. This suggests the need for targeted strategies for different areas to effectively improve the urban thermal environment and achieve sustainable urban development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3