Regionalization of the Onset and Offset of the Rainy Season in Senegal Using Kohonen Self-Organizing Maps

Author:

Faye Dioumacor1ORCID,Kaly François2,Dieng Abdou Lahat1,Wane Dahirou1,Fall Cheikh Modou Noreyni1ORCID,Mignot Juliette3,Gaye Amadou Thierno1ORCID

Affiliation:

1. Laboratoire de Physique de l’Atmosphère et de l’Océan-Siméon Fongang (LPAO-SF), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar 10700, Senegal

2. Department of Computer Science, UFR of Sciences and Technologies, Université Iba Der THIAM de Thiès, Thies 21000, Senegal

3. Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre Simon Laplace, SU/IRD/CNRS/MNHN, UMR 7159, 75005 Paris, France

Abstract

This study explores the spatiotemporal variability of the onset, end, and duration of the rainy season in Senegal. These phenological parameters, crucial for agricultural planning in West Africa, exhibit high interannual and spatial variability linked to precipitation. The objective is to detect and spatially classify these indices across Senegal using different approaches. Daily precipitation data and ERA5 reanalyses from 1981 to 2018 were utilized. The employed method enables the detection of key dates. Subsequently, the Kohonen algorithm spatially classifies these indices on topological maps. The results indicate a meridional gradient of the onset, progressively later from the southeast to the northwest, whereas the end follows a north–south gradient. The duration varies from 45 days in the north to 150 days in the south. The use of self-organizing maps allows for classifying the onset, end, and duration of the season into four zones for the onset and end, and three zones for the duration of the season. They highlight the interannual irregularity of transitions, with both early and late years. The dynamic analysis underscores the complex influence of atmospheric circulation fields, notably emphasizing the importance of low-level monsoon flux. These findings have tangible implications for improving seasonal forecasts and agricultural activity planning in Senegal. They provide information on the onset, end, and duration classes for each specific zone, which can be valuable for planning crops adapted to each region.

Publisher

MDPI AG

Reference69 articles.

1. Sensivity of Crop Yields to Temperature and Rainfall Daily Metrics in Senegal;Toure;Am. J. Rural. Dev.,2020

2. Touré, A.K., Fall, C.M.N., Diakhaté, M., Wane, D., Rodríguez-Fonseca, B., Ndiaye, O., Diop, M., and Gaye, A.T. (2022). Predictability of intra-seasonal descriptors of rainy season over Senegal using global SST patterns. Atmosphere, 13.

3. (2024, February 10). FAO 2015 Country Fact Sheet on Food and Agriculture Policy Trends. Available online: https://www.fao.org/3/i4841e/i4841e.pdf.

4. Performance of dry and wet spells combined with remote sensing indicators for crop yield prediction in Senegal;Fall;Clim. Risk Manag.,2021

5. Deux Exemples de Stratégies de Gestion du Risque Agricole en Afrique de l’Ouest;Roudier;Serv. Clim. Assur. Indicielles,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3