Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity

Author:

Guo Yakai12,Shao Changliang3ORCID,Niu Guanjun4,Xu Dongmei2,Gao Yong5,Yuan Baojun1

Affiliation:

1. Henan Meteorological Bureau, China Meteorological Administration, Zhengzhou 450003, China

2. Key Laboratory of Meteorological Disaster (KLME), Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China

3. Meteorological Observation Centre, China Meteorological Administration, Beijing 100081, China

4. Meteorological Development and Planning Institute, China Meteorological Administration, Beijing 100081, China

5. Tibet Meteorological Observatory, China Meteorological Administration, Lhasa 850000, China

Abstract

The high spatial complexities of soil temperature modeling over semiarid land have challenged the calibration–forecast framework, whose composited objective lacks comprehensive evaluation. Therefore, this study, based on the Noah land surface model and its full parameter table, utilizes two global searching algorithms and eight kinds of objectives with dimensional-varied metrics, combined with dense site soil moisture and temperature observations of central Tibet, to explore different metrics’ performances on the spatial heterogeneity and uncertainty of regional land surface parameters, calibration efficiency and effectiveness, and spatiotemporal complexities in surface forecasting. Results have shown that metrics’ diversity has shown greater influence on the calibration—predication framework than the global searching algorithm’s differences. The enhanced multi-objective metric (EMO) and the enhanced Kling–Gupta efficiency (EKGE) have their own advantages and disadvantages in simulations and parameters, respectively. In particular, the EMO composited with the four metrics of correlated coefficient, root mean square error, mean absolute error, and Nash–Sutcliffe efficiency has shown relatively balanced performance in surface soil temperature forecasting when compared to other metrics. In addition, the calibration–forecast framework that benefited from the EMO could greatly reduce the spatial complexities in surface soil modeling of semiarid land. In general, these findings could enhance the knowledge of metrics’ advantages in solving the complexities of the LSM’s parameters and simulations and promote the application of the calibration–forecast framework, thereby potentially improving regional surface forecasting over semiarid regions.

Funder

Henan Provincial Natural Science Foundation Project

the China Meteorological Administration Meteorological Development and Planning Institute Special Research Project

the Open Project of KLME CIC-FEMD NUIST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3