Affiliation:
1. Xinjiang Tarim River Basin Authority, Korla 841000, China
2. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
3. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
Abstract
Research on evapotranspiration and its drivers in the Aksu River Basin from the perspectives of climate change and land use is of great significance for promoting the efficient use and precise allocation of its water resources. Theil-Sen median trend analysis (T-S) and the Mann–Kendall nonparametric test (M-K), in addition to correlation analysis, partial correlation analysis, complex correlation analysis, and driving-factor zoning principles, were used to examine the characteristics of the spatiotemporal changes in evapotranspiration and to explore the driving mechanism of the changes in evapotranspiration. The results indicated that the range of fluctuations in the multiyear average evapotranspiration in the Aksu River Basin from 2001 to 2020 was between 481.58 and 772.37 mm/a, which showed the spatial distribution characteristics of being high in the west and central part of the basin, and low in the north and south of the basin. The positive correlation between evapotranspiration and precipitation was stronger, and the negative correlations with temperature and relative humidity were stronger. The change in evapotranspiration in cultivated land is mainly driven by precipitation and relative humidity × precipitation; for grassland, the main drivers were relative humidity and precipitation × relative humidity; for woodland, the main drivers were relative humidity and other climatic factors; and for other land types, the main drivers were other climatic factors.
Funder
National Scientific Foundation of China
State’s Key Project of Research and Development Plan
Ministry of Water Resources’ special funds for major scientific research
Scientific Research Project of the Tarim River Basin Management Bureau