Study on the Response Mechanism of Climate and Land Use Change to Evapotranspiration in Aksu River Basin

Author:

Zheng Gang1,Wei Guanghui1,Han Fanghong23ORCID,Cao Yan23,Gao Fan23

Affiliation:

1. Xinjiang Tarim River Basin Authority, Korla 841000, China

2. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

3. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China

Abstract

Research on evapotranspiration and its drivers in the Aksu River Basin from the perspectives of climate change and land use is of great significance for promoting the efficient use and precise allocation of its water resources. Theil-Sen median trend analysis (T-S) and the Mann–Kendall nonparametric test (M-K), in addition to correlation analysis, partial correlation analysis, complex correlation analysis, and driving-factor zoning principles, were used to examine the characteristics of the spatiotemporal changes in evapotranspiration and to explore the driving mechanism of the changes in evapotranspiration. The results indicated that the range of fluctuations in the multiyear average evapotranspiration in the Aksu River Basin from 2001 to 2020 was between 481.58 and 772.37 mm/a, which showed the spatial distribution characteristics of being high in the west and central part of the basin, and low in the north and south of the basin. The positive correlation between evapotranspiration and precipitation was stronger, and the negative correlations with temperature and relative humidity were stronger. The change in evapotranspiration in cultivated land is mainly driven by precipitation and relative humidity × precipitation; for grassland, the main drivers were relative humidity and precipitation × relative humidity; for woodland, the main drivers were relative humidity and other climatic factors; and for other land types, the main drivers were other climatic factors.

Funder

National Scientific Foundation of China

State’s Key Project of Research and Development Plan

Ministry of Water Resources’ special funds for major scientific research

Scientific Research Project of the Tarim River Basin Management Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3