Characteristics of Polycyclic Aromatic Hydrocarbons in Size-Resolved Particles in the Roadside Environment of Beijing: Seasonality, Source, and Toxicological Effects

Author:

Tian Shili1,Liu Qingyang2ORCID,Ge Simin1,Luo Liang3,Yang Ming1,An Yunhe1ORCID,Shao Peng1,Liu Yanju1ORCID

Affiliation:

1. Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

3. Department of Chemistry, Capital Normal University, Beijing 100048, China

Abstract

The polycyclic aromatic hydrocarbons (PAHs) in size-resolved particles emitted from diverse sources are required for quantification to reduce the emissions in order to protect public health. Twenty-four PAHs in size-segregated particles in the roadside environment of Beijing were observed from 1 October 2021 to 30 September 2022. The size distributions of PAHs were bimodal, with peak concentrations ranging from size fractions of 0.43 to 0.65 μm and 4.7 to 5.8 μm in all four seasons, respectively. The highest concentration of PAHs in fine particles (PM2.1) was 35.3 ng m−3 in winter, followed by 16.0 ng m−3 in autumn, 15.3 ng m−3 in spring, and 6.5 ng m−3 in summer. Conversely, the concentration of PAHs in coarse particles (PM2.1–9) ranged from 6.8 ng m−3 (summer) to 20.5 ng m−3 (winter) from low to high. The size fractions of 0.43–2.1 μm PAHs increased most from clear to polluted days, which could be ascribed to the heterogeneous reactions. Source apportionment using positive matrix factorization showed that four sources, namely biomass combustion, coal combustion, diesel vehicles, and gasoline vehicles accounted for PAHs with the estimation of 17.4%, 22.1%, 26.4%, and 23.2% to PAHs in PM2.1; and 19.6%, 24.3%, 23.6%, and 20.1% in PM2.1–9, respectively. Furthermore, we used the human alveolar epithelial cell (BEAS-2B) to assess the toxicological effects of size-resolved atmospheric PAHs. The results showed that the cell survival rate caused by fine particles was lower than that of coarse particles with the same concentrations of PAHs, which is mainly related to the higher content of highly toxic PAHs in fine particles.

Funder

Beijing Natural Science Foundation

Beijing Academy of Science and Technology Innovation Project

Publisher

MDPI AG

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3