Relationship between Greenhouse Gas Budget and Soil Carbon Storage Measured on Site in Zhalainuoer Grassland Mining Area

Author:

Tang Yan1,Mao Zhen1,Lu Dongqiang1,Feng Bo1,Xu Liang1,Zhong Licun1,Yu Jinbiao1

Affiliation:

1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Grassland has great potential for carbon sequestration; however, the relationship between carbon storage (CS) and greenhouse gas (GHG) budget and their influencing factors in the natural restoration process in grassland mining areas are rarely studied. In this study, taking Zhalainuoer mining area in Inner Mongolia as an example, the subsidence soil for 1-, 2-, 5-, 10-, and 15-year and non-subsidence soil were selected as the research objects to explore the relationship between CS and the GHG budget and their influencing factors. The results show that there is a significant negative correlation between CS and the GHG budget. Soil organic carbon storage accounts for 99% of CS. CS is positively correlated with SOM and AP, and with the bacteria Entotheonellaeota. The GHG budget is mainly affected by CO2 emission, which is positively correlated with subsidence time, plant biomass, and coverage, negatively correlated with the bacteria Actinobacteriota and Deinococcota, and positively correlated with Cyanobacteria. In summary, soil plays a major role in storing carbon. Carbon sequestration is a physiological process produced by plants and organisms. Subsidence affects soil CS by changing soil properties and thus affecting its aboveground vegetation and soil microorganisms. This study investigates the changes in soil carbon storage following subsidence caused by mining activities. The findings contribute to our understanding of the impact of mining subsidence on soil CS and can inform the development of low-carbon remediation technologies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3