Analysis of the Influencing Factors and Sources of Brown Carbon Light Absorption in a Typical Megacity of the Yangtze River Delta, China

Author:

Xu Shanshu1,Wang Junfeng1,Li Yue’e2,Zhang Ning1,Ge Xinlei1ORCID,Aruffo Eleonora3ORCID

Affiliation:

1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Suzhou Environmental Monitoring Center, Suzhou 215011, China

3. Department of Advanced Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy

Abstract

Brown carbon (BrC) is a new term for organic aerosol (OA) with strong absorption ability from the visible to ultraviolet (UV) wavelengths, which plays a vital role in atmospheric visibility and climate change. Herein, we report field measurements from 1 March 2020 to 28 February 2021, sampled at urban Suzhou, Yangtze River Delta (YRD), China, to investigate the optical properties and sources of BrC. By analyzing the seasonal characteristics of the absorption of BrC at 370 nm (babs370), babs370 was found to be the highest (9.0 ± 7.2 Mm−1) in winter and the lowest (5.1 ± 3.3 Mm−1) in summer, respectively. The absorption Ångström exponent (AAE) value of BrC in winter was 1.22 ± 0.05, followed by 1.21 ± 0.05, 1.20 ± 0.05, and 1.19 ± 0.05 for fall, spring, and summer, respectively. The mass absorption cross-section (MAC) of secondary organic carbon (SOC) was 3.3 ± 0.2 m2g−1 in spring, 2.9 ± 0.1 m2g−1 in summer, 4.3 ± 0.1 m2g−1 in fall, and 2.8 ± 0.2 m2g−1 in winter, significantly lower than that of primary organic carbon (POC) at 370 nm, suggesting the aging process could weaken the light absorption of BrC. Five different BrC factors were identified by the positive matrix factorization (PMF) analysis, including biomass-burning-related, vehicle-related, sulfate-related, nitrate-related, and dust-related factors, which on average account for 7.4%, 73.4%, 11.9%, 1.9%, and 5.4% of babs370, respectively. Potential Source Contribution Factor (PSCF) analysis showed that those high babs370 periods were mainly contributed by air mass from the south. Moreover, for the influence degree of the potential source areas, the sequence was winter > spring > fall > summer. Our results improve the understanding of BrC in an important industrial city in YRD, which could reduce the uncertainty of the prediction of its climate effect in this region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3