Affiliation:
1. Guangxi Academy of Environmental Sciences, Nanning 530022, China
2. School of Ecological Environment Protection, Guangxi Eco-Engineering Vocational & Technical College, Liuzhou 545004, China
3. Bureau of Ecology and Environment, Nanning 530022, China
4. School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
Abstract
Severe ozone (O3) pollution has been recorded in China in recent years. The key precursor, volatile organic compounds (VOCs), is still not well understood in Nanning, which is a less developed city compared to other megacities in China. In this study, a year-long measurement of VOCs was conducted from 1 October 2020 to 30 September 2021, to characterize the ambient variations and apportion the source contributions of VOCs. The daily-averaged concentration of VOCs was measured to be 26.4 ppb, ranging from 3.2 ppb to 136.2 ppb across the whole year. Alkanes and oxygenated VOCs (OVOCs) were major species, contributing 46.9% and 25.2% of total VOC concentrations, respectively. Propane, ethane, and ethanol were the most abundant in Nanning, which differed from the other significant species, such as toluene (3.7 ppb) in Guangzhou, ethylene (3.8 ppb) in Nanjing, and isopentane (5.5 ppb), in Chengdu. The positive matrix factorization (PMF) model resolved six source factors, including vehicular emission (contributing 33% of total VOCs), NG and LPG combustion (19%), fuel burning (17%), solvent use (16%), industry emission (10%), and biogenic emission (5%). This indicated that Nanning was less affected by industrial emission compared with other megacities of China, with industry contributing 12–50%. Ethylene, m/p-xylene, butane, propylene, and isoprene were key species determined by ozone formation potential (OFP) analysis, which should be priority-controlled. The variations in estimated OFP and observed O3 concentrations were significantly different, suggesting that VOC reactivity-based strategies as well as meteorological and NOx effects should be considered collectively in controlling O3 pollution. This study presents a year-long dataset of VOC measurements in Nanning, which gives valuable implications for VOC control in terms of key sources and reactive species and is also beneficial to the formulation of effective ozone control strategies in other less developed regions of China.
Funder
Natural Science Foundation of Guangxi Province
Chinese Guangxi Key research and development plan for the Department of Guangxi Science