Study on the Concentration of Top Air Pollutants in Xuzhou City in Winter 2020 Based on the WRF-Chem and ADMS-Urban Models

Author:

Liu Wenhao1ORCID,Ling Xiaolu1ORCID,Xue Yong12ORCID,Wu Shuhui1ORCID,Gao Jian1,Zhao Liang1,He Botao1ORCID

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. School of Computing and Mathematics, College of Science and Engineering, University of Derby, Kedleston Road, Derby DE22 1GB, UK

Abstract

In recent years, the issue of air pollution has garnered significant public attention globally, with a particular emphasis on the challenge of atmospheric fine particulate matter (PM2.5) pollution. The efficient and precise simulation of changes in pollutant concentrations, as well as their spatial and temporal distribution, is essential for effectively addressing the air pollution issue. In this paper, the WRF-Chem model is used to simulate the meteorological elements including temperature (T), relative humidity (RH), wind speed (WS), and pressure (P), and the concentrations of PM2.5 and PM10 atmospheric pollutants in December 2020 in Xuzhou City. Simultaneously, the ADMS-Urban model was employed to conduct a higher spatial resolution study of PM2.5 concentrations during the heavy pollution days of 11–12 December 2020 in Xuzhou City. The study shows that the WRF-Chem model can simulate the meteorological conditions of the study time period better, and the correlation coefficients (R) of pressure, temperature, wind speed, and relative humidity are 0.99, 0.87, 0.75, and 0.70, respectively. The WRF-Chem model can accurately simulate the PM2.5 concentration on clean days (R of 0.66), but the simulation of polluted days is not satisfactory. Therefore, the ADMS-Urban model was chosen to simulate the PM2.5 concentration on polluted days in the center of Xuzhou City. The ADMS-Urban model can simulate the distribution characteristics and concentration changes of PM2.5 around roads and buildings in the center of Xuzhou City. Comparing the simulation results of the two models, it was found that the two models have their own advantages in PM2.5 concentration simulation, and how to better couple the two models is the next research direction.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Research and Demonstration of Fine Numerical Simulation of Atmospheric Pollution and Greenhouse Gases in Xuzhou City

General Project of Modern Agriculture from the Primary R&D Program of Xuzhou

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3