Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon

Author:

Yoshida Alexandre Calzavara12ORCID,Venturini Patricia Cristina2,Lopes Fábio Juliano da Silva3ORCID,Landulfo Eduardo1ORCID

Affiliation:

1. Center for Lasers and Applications (CELAP), Institute of Energy and Nuclear Research (IPEN), São Paulo 05508-000, Brazil

2. Institute of Exact and Natural Sciences of Pontal (ICENP), Federal University of Uberlândia (UFU), Campus Pontal, Ituiutaba 38304-402, Brazil

3. Department of Environmental Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Federal University of São Paulo (UNIFESP), Campus Diadema, São Paulo 09913-030, Brazil

Abstract

The Atmospheric Dynamics Mission ADM-Aeolus was successfully launched in August 2018 by the European Space Agency (ESA). The Aeolus mission carried a single instrument, the first-ever Doppler wind lidar (DWL) in space, called Atmospheric LAser Doppler INstrument (ALADIN). Aeolus circled the Earth, providing vertical profiles of horizontal line-of-sight (HLOS) winds on a global scale. The Aeolus satellite’s measurements filled critical gaps in existing wind observations, particularly in remote regions such as the Brazilian Amazon. This area, characterized by dense rainforests and rich biodiversity, is essential for global climate dynamics. The weather patterns of the Amazon are influenced by atmospheric circulation driven by Hadley cells and the Intertropical Convergence Zone (ITCZ), which are crucial for the distribution of moisture and heat from the equator to the subtropics. The data provided by Aeolus can significantly enhance our understanding of these complex atmospheric processes. In this long-term validation study, we used radiosonde data collected from three stations in the Brazilian Amazon (Cruzeiro do Sul, Porto Velho, and Rio Branco) as a reference to assess the accuracy of the Level 2B (L2B) Rayleigh-clear and Mie-cloudy wind products. Statistical validation was conducted by comparing Aeolus L2B wind products and radiosonde data covering the period from October 2018 to March 2023 for Cruzeiro do Sul and Porto Velho, and from October 2018 to December 2022 for Rio Branco. Considering all available collocated winds, including all stations, a Pearson’s coefficient (r) of 0.73 was observed in Rayleigh-clear and 0.85 in Mie-cloudy wind products, revealing a strong correlation between Aeolus and radiosonde winds, suggesting that Aeolus wind products are reliable for capturing wind profiles in the studied region. The observed biases were −0.14 m/s for Rayleigh-clear and −0.40 m/s for Mie-cloudy, fulfilling the mission requirement of having absolute biases below 0.7 m/s. However, when analyzed annually, in 2022, the bias for Rayleigh-clear was −0.95 m/s, which did not meet the mission requirements.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3