Temporal and Spatial Variation Characteristics of the Ecosystem in the Inner Mongolia Section of the Yellow River Basin

Author:

Yang Junjie1,Jia Laigen1,Hao Jun1,Luo Qiancheng234ORCID,Chi Wenfeng23ORCID,Wang Yuetian23ORCID,Zheng He23,Yuan Ruiqiang23,Na Ya4

Affiliation:

1. Inner Mongolia Territorial Space Planning Institute, Hohhot 010013, China

2. College of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China

3. Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Hohhot 010070, China

4. College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

As one of the most vital ecological regions in China, the well-being of the Inner Mongolia section of the Yellow River Basin directly hinges upon comprehending the variations in its ecosystem. The current research puts emphasis on the analysis of single-factor ecological indicators within the Mongolian section of the Yellow River and lacks summarization and analysis regarding the overall state of the ecosystem within the Mongolian section of the Yellow River. This study, using methods such as remote sensing interpretation and model simulation, combined with ground surveys, analyzes the macrostructure, quality status, service functions, and driving factors of the ecosystem in the Inner Mongolia section of the Yellow River Basin from 2000 to 2020. The results indicate that (1) in 2020, the ecosystem structure in the Inner Mongolia section of the Yellow River Basin was predominantly composed of forest, grassland, and other types of systems. (2) From 2000 to 2020, the Normalized Difference Vegetation Index (NDVI), Fractional Vegetation Cover (FVC), and net primary productivity (NPP) all showed increasing trends in the Inner Mongolia section of the Yellow River Basin, with NPP showing a slightly greater increase compared to the NDVI and FVC. (3) Over the past two decades, the overall rate of decrease in the wind erosion modulus per unit area was 1.675 t hm−2. (4) An analysis of the drivers of ecosystem changes revealed that while climate change has exerted an influence, human activities have likewise had a substantial effect on the ecosystem over the past 20 years. This study contributes to a comprehensive understanding of the current status and changes in the ecosystem, providing a decision-making basis for subsequent ecological protection and management projects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3