Development and Evaluation of a Short-Term Ensemble Forecasting Model on Sea Surface Wind and Waves across the Bohai and Yellow Sea

Author:

Zang Tonghui1ORCID,Zou Jing1ORCID,Li Yunzhou1,Qiu Zhijin1ORCID,Wang Bo1,Cui Chaoran1ORCID,Li Zhiqian1ORCID,Hu Tong1,Guo Yanping1

Affiliation:

1. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China

Abstract

In this study, an ensemble forecasting model for in situ wind speed and wave height was developed using the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) model. This model utilized four bias correction algorithms—Model Output Statistics (MOS), Back Propagation Neural Network (BPNN), Long Short-Term Memory (LSTM) neural network, and Convolutional Neural Network (CNN)—to construct ensemble forecasts. The training data were derived from the COAWST simulations of one year and observations from three buoy stations (Laohutan, Zhifudao, and Lianyungang) in the Yellow Sea and Bohai Sea. After the optimization of the bias correction model training, the subsequent evaluations on the ensemble forecasts showed that the in situ forecasting accuracy of wind speed and wave height was significantly improved. Although there were some uncertainties on bias correction performance levels for individual algorithms, the uncertainties were greatly reduced by the ensemble forecasts. Depending on the dynamic weight assignment, the ensemble forecasts presented a stable performance even when the corrected forecasts by three algorithms had an obvious negative bias. Specifically, the ensemble forecasting bias was found with a mean reduction of about 96%~99% and 91%~95% for wind speed and wave height, and a reduction of about 91%~98% and 16%~54% during the period of Typhoon “Muifa”. For the four correction algorithms, the performance of bias correction was not directly related to the algorithm complexity. However, the strategies with more complex algorithms (i.e., CNN) were more conservative, and simple algorithms (i.e., MOS) might have induced unstable performance levels despite their lower bias in some cases.

Funder

Key R&D Program of Shandong Province, China

National Natural Science Foundation of China

Natural Science Foundation of Shandong province, China

“Four Projects” of computer science

basic research foundation in Qilu University of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3