The ap Prediction Tool Implemented by the A.Ne.Mo.S./NKUA Group

Author:

Mavromichalaki Helen1ORCID,Livada Maria1,Stassinakis Argyris1ORCID,Gerontidou Maria1ORCID,Papailiou Maria-Christina1,Drube Line2ORCID,Karmi Aikaterini1

Affiliation:

1. Nuclear and Particle Physics Section, Physics Department, National and Kapodistrian University of Athens, 15784 Athens, Greece

2. DTU Space Division of Geomagnetism and Geospace, Technical University of Denmark, Centrifugevej, 356, 014, 2800 Kgs. Lyngby, Denmark

Abstract

A novel tool utilizing machine learning techniques was designed to forecast ap index values for the next three consecutive days (24 values). The tool employs time series data from the 3 h ap index of solar cycles 23 and 24 to train the Long Short-Term Memory (LSTM) model, predicting ap index values for the next 72 h at three-hour intervals. During periods of quiet geomagnetic activity, the LSTM model’s performance is sufficient to yield favorable outcomes. Nevertheless, during geomagnetically disturbed conditions, such as geomagnetic storms of different levels, the model needs to be adapted in order to provide accurate ap index results. In particular, when coronal mass ejections occur, the ap Prediction tool is modulated by inserting predominant features of coronal mass ejections such as the date of the event, the estimated time of arrival and the linear speed. In the present work, this tool is described thoroughly; moreover, results for G2 and G3 geomagnetic storms are presented.

Publisher

MDPI AG

Reference32 articles.

1. Space weather: The solar perspective;Schwenn;Living Rev. Solar Phys.,2006

2. Developing the scientific basis for monitoring, modelling and predicting space weather;Lilensten;Acta Geophys.,2009

3. The idea of space weather;Kane;Adv. Space Res.,2006

4. The Origin of Space Weather;Cade;Space Weather,2005

5. Parks, G.K. (1991). Physics of Space Plasmas, Addison-Wesley Publishing Company.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3