Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning

Author:

Zhou Xiaoting1,Liu Zhiqiang1,Wu Lang1,Wang Yangqing1

Affiliation:

1. School of Civil Engineering, Jiangxi Normal University of Science and Technology, Nanchang 330013, China

Abstract

CO2 emissions prediction plays a key role in atmospheric environment management and regional sustainable development. Taking the Four Provinces of Mountains and Rivers (Henan, Hebei, Shandong, and Shanxi) in China as an example, the Autoregressive Integrated Moving Average Model (ARIMA) and random forest importance analysis were used to calculate the future trend of the CO2 emission–influencing factors and obtain the main influencing factors. Based on the above, BP neural network (BPNN), support vector machine (SVR), and random forest (RF) models were used to predict the future apparent CO2 emissions of the four provinces. The results show that, in general, population, coal consumption, and per capita GDP are the main factors influencing CO2 emissions. The RF model has the best prediction performance; for instance, RMSE (81.86), R2 (0.905), and MAE (64.69). The prediction results show that the total apparent CO2 emissions of the Four Provinces of Mountains and Rivers will peak in 2028 (with a peak of about 4500 Mt). The apparent CO2 emissions of Henan, Hebei, and Shandong Province peaked in 2011 (with a peak of about 654 Mt), 2013 (with a peak of about 657 Mt), and 2020 (with a peak of about 1273 Mt), respectively. Shanxi is forecast to reach its peak (with a peak of about 2486 Mt) in 2029. The apparent CO2 emissions of all provinces showed an obvious downward trend after reaching their peak. Henan, Hebei Shandong, and Shanxi showed a significant downward trend in 2018, 2023, and 2032, respectively.

Funder

Jiangxi Science and Technology Normal University doctoral research start-up fund

Jiangxi Province Earthquake Prevention and Disaster Reduction and Engineering Geological Disaster Detection Engineering Research Center open fund

Science and technology research project of Jiangxi Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3